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A phenomenological model is developed to describe the isotropic–chiral-smectic-C phase transition. The
anomalous part of the heat capacity of the chiral-smectic-C liquid crystals above the isotropic–chiral-smectic-
C phase transition is calculated using Landau’s fluctuation theory. The temperature dependence of the heat
capacity above the transition point is calculated first for the Gaussian model and then taking the cubic and the
quartic terms as a perturbation. The theoretical results are found to be in good agreement with experiment.
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I. INTRODUCTION

The pretransitional behavior in the isotropic phase of the
smectogenic mesophases is still an active and an unknown
area in the field of liquid crystals research. In recent years the
transitions from a smectic phase to an isotropic phase have
attracted much attention. This includes experimentalf1–5g
and theoreticalf6–10g studies. The isotropic to chiral-
smectic-CsI-SmC*d is one such phase transition which has a
considerable current interest. The chiral-smectic-CsSmC*d
phase represents a spatially modulated structuref11g. The
ferroelectric ordering in the SmC* phase is usually discussed
in terms of hindrances of rotation of the molecules around
their long axis. However, the microscopic origin of this or-
dering remained obscure. A number of experimentsf12–17g
have been carried out on the I-SmC* phase transition. All the
materials studied the I-SmC* phase transition appears to
be first order. Emaet al. f5g measured the temper-
ature dependence of the heat capacity for 2-h4-
fsRd-2-fluro-hexyloxygphenylj-5-h4-fsSd-2-fluro-2-methylde-
canoyloxygphenyljpyrimidine sRSFPPYd both above and be-
low the phases of the I-SmC* phase transition. The analysis
of the temperature dependence of the heat capacity reveals
an appreciable anomalous component, i.e., in the heat capac-
ity above and below the transition. This anomalous compo-
nent showed quite different behavior depending on whether
the measurement was made on heating or cooling. They ob-
served the complicated structure of the heat anomaly accom-
panying the I-SmC* phase transition on cooling. However,
they did not succeed to reproduce the detailed behavior of
the heat anomaly near the I-SmC* phase transition.

On the theoretical side there is only one attemptf18g to
study the I-SmC* phase transition. In this recent work
Mukherjeeet al. f18g developed a Landau model to describe
the direct I-SmC* phase transition. In this work they ex-
plained the key features of the I-SmC* phase transition. The
purpose of the present paper is to explain the anomalous heat
capacity in the isotropic region within the framework of Lan-
dau’s fluctuation theory. We calculate directly the tempera-
ture dependence of the heat capacity in the isotropic phase of
the I-SmC* phase transition.

II. THEORY

A. Free energy

The construction of the Landau free energy for the
I-SmC* phase transition is rather complex. We start by de-
scribing the order parameters involved in the I-SmC* phase
transition. The layering in the SmC* phase is described by
the order parametercsr d=c0exps−iFd, whose modulusc0 is
defined as the amplitude of a one dimensional density wave
characterized by the phaseF. The wave vector=iF is par-
allel to the directorni in the smectic-A phase. The layer
spacing is given byd=2p /q0 with q0= u=Fu. The tilt angle
in the SmC* phase is described by the tensor order parameter

Qijsr d =
Ssr d

2
f3nisr dnjsr d − 1g. s1d

The quantitySsr d denotes the fraction of molecules atr
aligned parallel ton. The directornisr d in terms of the tilt
angleusr d and azimuthal anglef can be expressed as

nisr d = exsinusr d cosfszd + eysinu„r … sinfszd + ezcosusr d,

s2d

where usr d is the angle between the layer normal and the
director nisr d. While the tilt is varying from layer to layer,
the layer normalsz axisd is fixed. The azimuthal anglef
describing the average position of the molecules on the cone
which changes with the coordinatez as f=qz, q being the
wave vector of the helix. This selection of the tensor order
parameter is not unique, and different definitions of the order
parameter will result in different coefficients in the free en-
ergy expansion, but the thermodynamic quantities calculated
will not be affected by the definition of the order parameter.

The in-plane spontaneous polarization is defined as

P=P0„− sinfszd,cosfszd,0…. s3d

HereP0 is the magnitude of the spontaneous polarization in
the unwound ferroelectric state.

Considering the above described order parameters, the to-
tal free energy near the I-SmC* transition can be written as
f18g
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Fsr d = F0 +
1

3
aQijsr dQijsr d −

4

9
bQijsr dQjksr dQkisr d +

1

9
cfQijsr dQijsr dg2 +

1

2
aucu2 +

1

4
gucu4 +

1

2x0
P2 +

1

3
dQijsr dQijsr ducu2

+ hQijsr dPiPj +
1

2
d1u=icu2 +

1

2
d2uDcu2 +

1

2
L1=iQjksr d=iQjksr d + L3«i jkQilsr d=kQjlsr d +

1

2
eQijsr ds=icds= jc

*d

+
1

2
fQilsr dQjlsr ds=icds= jc

*d +
1

2
hQijsr dQklsr ds=i= jcds=k=lc

*d +
1

2
gijklPl=kQijsr d, s4d

whereF0 is the free energy of the isotropic phase. Herea
=a0sT−T1

*d, anda=a0sT−T2
*d. T1

* andT2
* are the critical tem-

perature for a hypothetical second order transition.a0, a0, b,
c, g, h, d1, and d2 are positive constants.d is a coupling
constant. A negative value ofd increases the smectic order-
ing and favors the SmC* phase over the isotropic phase.x0 is
the dielectric susceptibility.L1 is the elastic constant. An-
other elastic term, L2=iQiksr d= jQjksr d is neglected for
simplicity. Here«i jk is the antisymmetric third rank tensor.
The chiral character of the SmC* phase results in the pseu-
doscalar first order spatial derivative term in the free energy.
Thus the coefficientL3 is analogous to the coefficient of the
Lifshitz-invariant term and induces the helical modulation of
the SmC* phase. The gradient terms,e, ,f and,h involv-
ing Qijsr d governs the relative direction of the layering with
respect to the director and lead to the tilt angle of the SmC*

phase. In general a negative value ofe favors the stability of
the SmC* phase. There is no direct linear coupling term
,ucu2Qijsr d in the free energys4d, since such a term cannot
exist in the isotropic phasef6g. Here gijkl takes the form
gijkl =gsdikd jl +dild jkd. The coefficientg is analogous to the
flexoelectric coefficient. This coupling term is of chiral char-
acter and induces a transverse polar ordering. A coupling
term ,P2ucu2 can also be added in the free energys4d. An
important feature of the model free energys4d is thatu is not
a separate order parameter but arises from the competition
betweenQijsr d and c. The above free energy describes the
direct first order I-SmC* phase transition.

Now we consider the phase in which the translational or-
der parameter is spatially homogeneous, i.e.,c0=const. for
the simplicity of the calculation. The substitution ofQij , and
c in Eq. s4d, and eliminating the equilibrium values ofc0, u,
P0, q0, andq from Eq.s4d, leads to the free energy density as
a function ofSsr d alone can be written as

Hsr d = Fsr d − F0
* = S1 −

3m

4n
De*a*

2g
Ssr d +

1

2
a*S2sr d

−
1

3
b*S3sr d +

1

4
c*S4sr d +

1

2
L1

*f=Ssr dg2. s5d

Equations5d considers both the spatial fluctuations ofSsr d
and usr d. The tilt angle fluctuations in Eq.s5d appear as
,f=Ssr dg2, ,Sf=Ssr dg2,S2f=Ssr dg2, etc. However, we

have considered only the,f=Ssr dg2 term and neglect the
terms like ,Sf=Ssr dg2,S2f=Ssr dg2, etc. for simplicity of
the calculation. The dependence of the Ginzburg-Landau pa-
rameters and the elastic constantL1 becomes more compli-
cated, when such terms are considered.

The tilt angleu in the SmC* phase can be expressed as

sin2u =
s3e*a* /4gd + mS

2nS
. s6d

The behavior of the tilt angleu in the SmC* phase is
completely determined by the behavior of the orientational
order parameterS. In this connection we point out that the
modulus of the orientational order parameter in the SmC*

phase was measured experimentally by Dollase and Fung
f21g and described the smectic-A–SmC* transition by the
jump of the modulus of the orientational order parameter.

While deriving Eqs.s5d and s6d we have done the series
expansion off1+sg2x0/2L1dg−1 and consider the terms up to
sg2x0/2L1d2.

The renormalized coefficients are

F0
* = F0 −

a*2

4g
−

9

64n
Se*a*

g
D2

,

a* = a0
*sT − T*d,

b* = b0sT − T3
*d,

c* = c0sT − T4
*d,

L1
* =

3

8
L1,

e* = ed1/2d2,

f* = fd1/2d2,

h* = hd1/d2

h** = hd1
2/d2

2

h0 = h** − se2/d2d
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d* = d −
e2

4d2
− f* + sh** /4d

a0
* = a0 −

d*a0

g
− b2,

b0 = f− 3esf − h*da0/4gd2g,

c0 = sa0/2gd2
2dfd2sf − h*d2 − he2g,

b1 =
x2

2Z
S1 −

yd1
2

4d2
D ,

b2 = Fy + S1 −
yd1

2

4d2
DwGx2a0

2Z
,

x = S9L3
2u

16L1
−

3e*2

4g
D ,

y =
3sf* − h0d

4gx
,

Z =
9L3

2uv
16L1

−
9e*2

16g
,

w =
9sh0 + e*2d

32gZ
,

T* = Fa0T1
* − Sb2 +

d*a0

g
DT2

* + b1 +
e*2

2g
−

d*d1
2

4gd2
GY a0

* ,

T3
* = T2

* − Fb −
3d*e*

2g +
3ed1

2sf − h*d
16gd2

2 GY b0,

T4
* = T2

* +
d1

2

4d2a0
− Fc −

d*2

g
−

ee*sf − 2h*d
2gd2

GY c0,

m= −
3e*2

4g
+

3a*sf* − h0d
8g

+
9L3

2u

16L1
,

n = −
9e*2

16g
−

9ash0 + e*2d
32g

+
9L3

2uv
16L1

,

u = 1 + sg2x0/2L1d + sg2x0/2L1d2,

v = sg2x0/2L1du.

The above described renormalized coefficients are utmost
complicated although the calculations are straightforward.
We have done the series expansion ofm2/2n in order to
obtain the renormalized coefficienta* .

Equations6d shows that the tilt angle is influenced by the
chirality of the system. Although in the Landau expansion of
free energys4d no change of the values ofb and c are al-
lowed as one approaches the transition temperature. The
renormalized coefficientsb* andc* are now temperature de-
pendent. This is justified since the renormalization group
analysis and the Monte Carlo simulation results indicates the
renormalization of the Landau coefficients as one approaches
the transition temperature. We assumeT* <T3

* <T4
* . The

renormalized temperatureT* shows that the chirality slightly
changes the I-SmC* transition temperature but does not in-
fluence the nature of the I-SmC* transitionssinceb andc are
not influenced by the chiralityd. Thus the I-SmC* phase tran-
sition temperature has been slightly shifted for the SmC*

liquid crystal in comparison with the SmC compound. Since
the quartic coefficientc* changes with temperature and can
be negative, then stabilizing fifth and sixth order terms
,DS5sr d and ,ES6sr d with E.0 should be added in the
free energys5d.

FIG. 1. The anomalous part of
the measured heat capacityCPsTd
of the liquid crystal RSFPPY in
the isotropic phase above the iso-
tropic to smectic-C* transition.
The measured datascircled are
from Ref. f5g, and the line is the
best fit of Eq.s13d. The upper in-
set shows the measured heat ca-
pacity over the full temperature
range.
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The partition function, averages, and correlation function
are calculated with the weight

WfSg = expS− bE Hsr ddrD , s7d

with b=1/kBT and kB is the Boltzmann constant. We now
proceed to calculate the anomalous heat capacity. To calcu-
late the heat capacity we have followed the methods adopted
by Imuraet al. f19g and Fixmanf20g.

B. Gaussian model

Settingb* =0 andc* =0 in Eq. s5d, the free energy of the
system of volumeV can be written as

g0 =E
V

Hsr ddr . s8d

The entropy density associated with the fluctuation is ob-
tained by differentiating Eq.s5d with respect to the tempera-
ture,

Ds8sT,Sd = −
1

2
S ]a*

]T
DS2sr d. s9d

The ensemble average of Eq.s9d gives the entropy change
due to the fluctuations,

kDs8sTdl = −
1

2o
k
S ]a*

]T
DkuSskdu2l, s10d

where

kuSskdu2l <
kBT

a* + L1
*k2 ; Gskd s11d

is the k-dependent order parameter fluctuation andGskd is
the reciprocal-space correlation function. The wave vectork

is summed over all the modes of the system. HerekSskdl
=0 in the isotropic phase in the absence of external field.
Now ok→ s1/8p3de0

qmaxdk, where qmax is the cutoff wave
vector.

Hence the excess entropy in terms of the correlation func-
tion G can be expressed as

kDs8sTdl = −
a0

*

16p3E
0

qmax

Gskddk . s12d

The corresponding heat capacity at constant pressure per
unit volume due to the fluctuations is then given, taking
qmax→`, as

DCPsTd =
]

]T
sTkDs8ld = C1T

2sT − T*d−1/2, s13d

whereC1=skB/16pdsa0
* /L1

*d3/2.

C. Contributions of the cubic and the quartic terms

The contributions of the cubic and the quartic terms in the
free energy can be obtained using perturbation theory, with
the Gaussian model taken as the zeroth-order perturbation.
We divide the total free energy into two parts:g=g0+g1.
Here g0 is the free energy in the Gaussian model andg1 is
given by

g1 =E
V
F−

1

3
b*S3sr d +

1

4
c*S4sr dGdr . s14d

Using the method of Feynman graphsf22g, the correlation
function can be written in theqmax→` limit, to the second
order inb* and the first order inc* , as

G8skd =
kBT

a* + k2fL1
* +

kBT

32pj0
3sb* /L1

*d2g −
3kBT

4p j0
−1sc* /L1

*d −
kBT

8p j0sb* /L1
*d2

s15d

with j0=sL1
* /a0

*d1/2sT−T*d−1/2. Utilizing the same procedures employed above, the excess heat capacity at constant pressure per
unit volume due to the fluctuation is obtained as

DCPsTd = C1T
2Hf1 + C2TsT − T3

*d2sT − T*d−3/2g−3/2fsT − T*d − 4C2TsT − T3
*d2sT − T*d−1/2 − C3TsT − T4

*dsT − T*d1/2g−1/2

3F1 − 2C2Tf4sT − T3
*dsT − T*d−1/2 − sT − T3

*d2sT − T*d−3/2g − C3TSsT − T*d1/2 +
1

2
sT − T4

*dsT − T*d−1/2DG − 3sC2/2dT

3f1 + C2TsT − T3
*d2sT − T*d−3/2g−5/2f4sT − T3

*dsT − T*d−3/2 − 3sT − T3
*d2sT − T*d−5/2gfsT − T*d − 4C2T

3sT − T3
*d2sT − T*d−1/2 − C3TsT − T4

*dsT − T*d1/2g1/2J , s16d

whereC2=2C1b0
2/a0

*3 andC3=12C1c0/a0
*2.
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III. COMPARISON WITH EXPERIMENT

The temperature dependence of the heat capacity of RS-
FPPY was reported by Emaet al. f5g. The heat capacity
CPsTd in the I-SmC* transition on heating measured by Ema
et al. f5g is shown in the upper inset of Fig. 1. As can be
observed, the normal heat capacity is much higher than the
anomalous contribution. The strong large magnitude of the
normal component relative to the anomalous contribution
renders it progressively more difficult to separate out the
anomalous part as one gets further away from the transition
temperature. We have therefore fitted Eq.s13d, plus a normal
componentC0 representing the normal component, to the
measured data, over a restricted temperature range above the
I-SmC* transition, usingC1, T* , andC0 as a fit parameters.
C0=2.01 J K−1 g−1 was selected for the good fit. The fitslined
and the measured datascircled are shown in Fig. 1. As can be
observed, the agreement of the measured data with func-
tional form predicted by theory is reasonably good. The fit
yields C1=4.64310−7 J K−5/2 g−1. We also fitted the same
data by using Eq.s16d, which includes the contribution of the
cubic and quartic terms in the free energy. The line obtained
in the fit overlaps the line that shown in Fig. 1 on the scale of
the figure with different fit parameters. What transpires from
Fig. 1 is that only the first order theory is sufficient to explain
anomalous behavior of heat capacity above the I-SmC* tran-
sition. We further fitted the full heat capacity data above the
I-SmC* transition by Eq.s13d where the fitslined is shown in
the upper inset of Fig. 2. The fit yieldsC1=6.43
310−7 J K−5/2 g−1. As can be seen from the upper inset of
Fig. 2, the agreement is not reasonably good. We have there-
fore fitted the same data by Eq.s16d with C2 andC3 as a fit
parameters and taking the same value ofC1=6.43
310−7 J K−5/2 g−1 obtained for the upper inset of Fig. 2. The
fit slined and the measured datascircled are shown in Fig. 2.

The fit shows that the contributions to the cubic and the
quartic terms are indeed important and a perturbation theory
is justified in this case. The fit yieldsC2=4.13310−3 K−3/2

and C3=−1.06310−2 K−3/2. Equations16d is very sensitive
to the values ofT* , T3

* , andT4
* . From the fit we observe that

T* <T3
* <T4

* which justifies our assumption.
Finally we also observe that the amplitude of the order

parameterstilt angle or orientational orderingd fluctuation in-
creases abnormally near the I-SmC* transition temperature
sTC* Id and brings about the anomalous increment in heat ca-
pacity. This may be caused by a macroscopically inhomoge-
neous distribution of bulk impurities. From Eq.s13d it is
clear that the heat capacity has a square root divergence in
the isotropic phase. Thus the critical exponenta8=0.5 which
is same as in the case of isotropic-nematic and isotropic–
smectic-A transition and indicate the fluidlike analogy in the
isotropic phase of the I-SmC* transition.

IV. CONCLUSION

We have presented here a Landau fluctuation theory
analysis to describe the anomalous behavior of the heat ca-
pacity in the isotropic phase of the I-SmC* transition. The
analysis presents theoretical support with the experimental
observation. Although the agreement between experiment
and theory is reasonable, Eqs.s13d and s16d are sensitive to
the values ofC1, C2, andC3 which depends ona0

* and L1.
The value ofL1 can be obtained in principle from the light
scattering measurements. A reliable estimation of the phe-
nomenological coefficients and the elastic constantL1 is not
possible due to the lack of experimental data, e.g., order
parameters, light scattering, etc. The accurate measurements

FIG. 2. The heat capacity
CPsTd over the entire temperature
range of the liquid crystal RSF-
PPY in the isotropic phase above
the isotropic to smectic-C* transi-
tion. The measured data are from
Ref. f5g. The line is the best fit of
Eq. s16d. The upper inset shows
the fit of Eq.s13d of the same data
over the same temperature range.
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of the thermodynamic quantities near the I-SmC* transition
will speak for reasonableness of the values ofC1, C2, andC3

obtained from the fit. The present theory shows that a first
order theory is sufficient to explain only the anomalous be-
havior of the heat capacity above the I-SmC* transition
point. However, the cubic and the quartic contributions are
found to be important to explain the nature of the heat ca-
pacity over the entire temperature range above the I-SmC*

transition point. Accurate heat capacity and elastic constant

measurements near the I-SmC* transition are called for to
determine the validity range of the present theory.
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